skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Babar, Mohammad Fakhruddin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural networks (DNNs) are increasingly used in time-critical, learning-enabled cyber-physical applications such as autonomous driving and robotics. Despite the growing use of various deep learning models, protecting DNN inference from adversarial threats while preserving model privacy and confidentiality remains a key concern for resource and timing-constrained autonomous cyber-physical systems. One potential solution, primarily used in general-purpose systems, is the execution of the DNN workloads withintrusted enclavesavailable on current off-the-shelf processors. However, ensuring temporal guarantees when running DNN inference within these enclaves poses significant challenges in real-time applications due to(a)the large computational and memory demands of DNN models and(b)the overhead introduced by frequent context switches between “normal” and “trusted” execution modes. This paper introduces new time-aware schemes for dynamic (EDF) and fixed-priority (RM) schedulers to preserve the confidentiality of DNN tasks by running them inside trusted enclaves. We first propose a technique thatsliceseach DNN layer and runs them sequentially in the enclave. However, due to the extra context switch overheads of individual layer slices, we further introduce a novellayer fusiontechnique. Layer fusion improves real-time guarantees by grouping multiple layers of DNN workload from multiple tasks, thus allowing them to fit and run concurrently within the enclaves while maintaining timing constraints. We implemented and tested our ideas on the Raspberry Pi platform running a DNN-enabled trusted operating system (OP-TEE with DarkNet-TZ) and three DNN architectures (AlexNet-squeezed, Tiny Darknet, YOLOv3-tiny). Compared to the layer-wise partitioning approach, layer fusion can(a)schedule up to 3x more tasksets for EDF and 5x for RM and(b)reduce context switches by up to 11.12x for EDF and by up to 11.06x for RM. 
    more » « less
    Free, publicly-accessible full text available March 17, 2026
  2. Pellizzoni, Rodolfo (Ed.)
    Deep Neural Networks (DNNs) are becoming common in "learning-enabled" time-critical applications such as autonomous driving and robotics. One approach to protect DNN inference from adversarial actions and preserve model privacy/confidentiality is to execute them within trusted enclaves available in modern processors. However, running DNN inference inside limited-capacity enclaves while ensuring timing guarantees is challenging due to (a) large size of DNN workloads and (b) extra switching between "normal" and "trusted" execution modes. This paper introduces new time-aware scheduling schemes - DeepTrust^RT - to securely execute deep neural inferences for learning-enabled real-time systems. We first propose a variant of EDF (called DeepTrust^RT-LW) that slices each DNN layer and runs them sequentially in the enclave. However, due to extra context switch overheads of individual layer slices, we further introduce a novel layer fusion technique (named DeepTrust^RT-FUSION). Our proposed scheme provides hard real-time guarantees by fusing multiple layers of DNN workload from multiple tasks; thus allowing them to fit and run concurrently within the enclaves while maintaining real-time guarantees. We implemented and tested DeepTrust^RT ideas on the Raspberry Pi platform running OP-TEE+DarkNet-TZ DNN APIs and three DNN workloads (AlexNet-squeezed, Tiny Darknet, YOLOv3-tiny). Compared to the layer-wise partitioning approach (DeepTrust^RT-LW), DeepTrust^RT-FUSION can schedule up to 3x more tasksets and reduce context switches by up to 11.12x. We further demonstrate the efficacy of DeepTrust^RT using a flight controller (ArduPilot) case study and find that DeepTrust^RT-FUSION retains real-time guarantees where DeepTrust^RT-LW becomes unschedulable. 
    more » « less